Statistical Mechanics and Quantum Integrability Systems Seminar Outline

Fall 2023

- The book doesn't explain all details. In your presentation, your job is to FILL IN those details.
- If you have any math related questions please email me ccl2166@columbia.edu IMMEDIATELY as I will need time to prepare an answer.
- Feel free to skip any physics (assuming you can distinguish between physics and math).
- The page numbering below is by what's written in the book, not the pdf which can be found in Files in Courseworks. For example, page 2 of the pdf corresponds to page 4 of the book.

1. $1 D$ - Solved Models

(1) The Ising Model
(a) Define $\cosh (x), \sinh (x), \tanh (x)$ and show that $\cosh ^{2}(x)-\sinh ^{2}(x)=1$ and thus the name "hyperbolic sine", etc.
(b) Follow [11, Chapter 2.1] up to page 50.
(c) Follow [11, Chapter 2.2] up to the end of 2.2.2. Leave the part about the Quantum Hamiltonian to the end.
(2) The Chromatic Polynomial and the Four-Color Theorem
(a) Follow [2, Sections 1, 2] skipping Theorem 2.6.
(b) Follow [11, Appendix 2.C] starting on page 95 and the end of [11, Section 2.5] on page 73.
(c) Prove your favorite theorems from [2, Sections 3].
(3) Series Expansion and the Potts Model
(a) Follow [11, Chapter 2.3]. Chapter 2.3
(b) Follow [11, Chapter 2.5]
(5) Bessel functions and $O(n)$ symmetry
(a) Follow [11, Appendix 2.A] up to the end of page 87 where it says, "For that reason, the $\Gamma(z)$ function ... of the factorial skipping the paragraph "Since $\Gamma(z+1)$ is defined..." Plotting Fig. 2.18 on page 89 would also be nice.
(b) Follow [11, Appendix 2.A, The Bessel functions $I_{v}(x)$] starting on page 90 and ending on page 92.
(c) Follow [11, Section 2.6] up to the end of page 76.
(d) Check that $I_{v}(x)$ is indeed a solution the "Bessel equation" (2.A.10). Proofs for the recurrences can be found in [8].
(14) Z_{n} symmetry and more on the Gamma Function
(a) Follow [11, Section 2.7]
(b) Follow [9] Section 15.8 stopping at the end of 15.8.1.

2. $2 D$ - Solved Models

(4) Duality in the $2 D$ - Ising Model
(a) Follow [11, Chapter 4.2].
(b) If you have time cover [11, Chapter 4.3].
(6) Dimer Solution and Circulant Matrices
(a) Follow [11, Exercise 5.4] on page 210. (Ask Cailan for notes)
(b) Follow [1] Sections 1-2 ignoring any computer code.
(7) Pfaffians and the Dimer solution of the $2 D$-Ising Model
(a) Follow [11, Chapter 5.2].
(b) Define the matrix J, state Theorem 3 and then prove Theorem 4 in [4].
(8) The Transfer Matrix Approach to the $2 D$-Ising Model
(a) Follow [11, Chapter 6] up to the end of Chapter 6.1.2. on the top of page 219.
(9) Eigenvalues of the Transfer Matrix
(a) Follow [11, Chapter 6.1.3-6.2].

3. Quantum Integrable Systems

(10) Tensor Products and the Heisenberg Spin Chain
(a) Follow [10] pages 5-8.
(b) Follow [7] Sections 1-4 skipping Section 3.1.
(c) Follow [3, Section 5.3] ignoring the part about measurements. (If you want to do this part, look up "Partial measurements" by Michael Nielsen on Youtube and then do Example 4 in [3].
(11) The XXX spin chain and Coordinate Bethe Ansatz
(a) Follow [7] Section 5.
(12) The Lax and Monodromy Matrices and the Yang-Baxter Equation
(a) Follow [6] up to the top of page 8, first pargraph where it says, "which he calls the star-triangle relation."

(13) Algebraic Bethe Ansatz and the XXX spin chain

(a) Follow [6] Sections 6-7.
(15) The 6 Vertex Model
(a) Follow [5] Section 6 up to Equation (6.19). Copy equation (6.21) and equation (6.25) and then start again at Section 6.3.4.

References

[1] ??? Circulant Matrices.
https://web.mit.edu/18.06/www/Spring17/Circulant-Matrices.pdf.
[2] A. Aydelotte. An Exploration of the Chromatic Polynomial.
https://scholarworks.boisestate.edu/cgi/viewcontent.cgi?article=1006\&context= math_undergraduate_theses.
[3] J. F. Biasse. Tensor Product and Mutli-Qubit Systems. https://www.usf-crypto.org/wp-content/uploads/2021/01/Tensor_product.pdf.
[4] H. E. Haber. Notes on antisymmetric matrices and the pfaffian. https://scipp.ucsc.edu/~haber/webpage/pfaffian2.pdf.
[5] J. L. Jacobsen and Y. Ikhlef. Alg'ebres, Int'egrabilit'e et Mod'eles Exactement Solubles. https://www.phys.ens.fr/~jacobsen/AIMES/AIMES-complete-lecture-notes.pdf.
[6] Y. Jiang. Algebraic Bethe ansatz. https://yauc.seu.edu.cn/_upload/article/files/0b/e0/ 206fa9724645829f4e9b4c29aed9/3b5012a6-976f-41fe-8928-1a22c59caf89.pdf.
[7] Y. Jiang. Heisenberg spin chain and Bethe ansatz. https://yauc.seu.edu.cn/_upload/article/files/0b/e0/ 206fa9724645829f4e9b4c29aed9/1dacdffb-9dcb-4fde-8646-6e66794c8d76.pdf.
[8] J. Lambers. Bessel Functions of the First Kind. https://www.math.usm.edu/lambers/mat415/notes415_1004.pdf.
[9] S. Miller. The Gamma Function and Related Distributions. https://web.williams.edu/ Mathematics/sjmiller/public_html/372Fa15/handouts/GammaFnChapter_Miller.pdf.
[10] H. Murayama. Notes on Tensor product. http://hitoshi.berkeley.edu/221A/tensorproduct.pdf.
[11] G. Mussardo. Statistical field theory. Oxford Graduate Texts. An introduction to exactly solved models in statistical physics. Oxford University Press, Oxford, 2010, pp. xxii+755.

